On This Page On This Page Are You Using the Right Sterilization Cycle? This in-depth guide will ensure that you select the appropriate cycle configuration for your intended application every time. Access Your Copy Steam Sterilization Cycles, Part 3: Steam-Air-Mix Cycle Written by: Arthur Trapotsis MS Biochemical Engineering, MBA, Consultant When using steam autoclaves, it’s critical to identify, understand, and create the proper sterilization cycle for ALL of your load requirements. So, as part of our series discussing Steam Sterilization Cycles, this third article is designed to explore the Steam-Air-Mix Cycle, a more advanced steam sterilization cycle for unique applications. Steam-Air-Mix Cycle Certain types of sterilization loads may require steam sterilization cycles that stray from the standard Gravity, Liquids, or Vacuum types. Take, for example, sterilizing a liquid-filled syringe using one of the three standard cycles. Immediately a problem is presented here: As the syringe heats up, the liquid inside of the syringe expands, exerting pressure on the stopper that is supposed to hold the liquid inside. This is especially critical when the container is topped-off with liquid (no air inside). If air resides in the container alongside the liquid, that will increase in pressure as well. If the stopper is not able to resist those pressures, the stopper will be forced out of position and may even eject from the syringe body. Now, not only will the syringe be unusable, but whatever was inside of the syringe will have made a mess of the rest of the load and your autoclave chamber. The obvious solution is to increase the autoclave chamber pressure in order to balance out the internal and external pressure of the syringe (or other sealed container). If the pressure outside of the syringe is equal to the pressure inside, then the stopper should not move. But how is this accomplished? One way to increase autoclave chamber pressure is to simply inject more steam. Unfortunately, as the steam pressure rises, so does the temperature. When the temperature rises, the contents of the container will heat even more, causing the internal pressure to continue to rise as well. A Steam-Air Mix Cycle solves this issue by injecting compressed air into the autoclave chamber during the sterilization phase in order to artificially raise the pressure. Steam continues to be injected into the chamber as needed in order to maintain the cycle’s temperature setting. After the sterilization phase is complete, it is necessary to maintain an elevated chamber pressure during the exhaust phase in order to keep the syringe intact. However, as the temperature falls, the internal pressure of the container will begin to fall as well, potentially causing the reverse-effect where the external pressure from the chamber compromises the container. To solve this, the chamber pressure is slowly reduced as the temperature falls. To get an overview of steam sterilization, check out our video here: The Steam-Air Mix Cycle option requires you to have a compressed air supply, and it is recommended for applications where a liquid is being sterilized in a sealed container that may be affected by pressure imbalances. As always, we at CSS hope this article—and our entire Steam Sterilization Cycles series—helps answer some of your most pressing questions. However, we encourage you contact us at any time with any additional questions or inquiries you may have—our team of experts is always here to help. 17 Questions to Ask Before Buying Your Next Autoclave With so many models, sizes, options and components to choose from, how can you ever really know exactly what you need to make the most out of your investment? These questions will help you to make informed decisions by outlining what is most important to consider and know about owning an autoclave. First Name* Last Name* Company/Organization* Email* Job Title*Select OneArchitectGeneral ContractorLab ManagerFacilities ManagerService TechnicianScientistSterile Processing TechnicianDistributorOtherDescribe "Other"* Country*AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAntigua and BarbudaArgentinaArmeniaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaColombiaComorosCongo, Democratic Republic of theCongo, Republic of theCosta RicaCôte d'IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFaroe IslandsFijiFinlandFranceFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGreeceGreenlandGrenadaGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiNorth KoreaSouth KoreaKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMauritaniaMauritiusMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew ZealandNicaraguaNigerNigeriaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestine, State ofPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalPuerto RicoQatarRomaniaRussiaRwandaSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSudanSudan, SouthSurinameSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamVirgin Islands, BritishVirgin Islands, U.S.YemenZambiaZimbabweState*Select OneAlabamaAlaskaArizonaArkansasCaliforniaColoradoConnecticutDelawareFloridaGeorgiaHawaiiIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMississippiMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyomingAre You Looking to Purchase an Autoclave?*Select OneYes, ImmediatelyYes, within 6 monthsYes, later than 6 monthsNo, just researchingAre you in a medical/healthcare (patient use) or life science (laboratory) setting?*Select OneMedical/HealthcareLife ScienceWhat type of healthcare facility do you work in?*Select OneHospitalAmbulatory Surgery CenterOther Yes, I'd like to receive occasional tips on sterilization best practices. Comments (Optional)This field is for validation purposes and should be left unchanged. Δ Tweet Like Share
Steam Sterilization Cycles, Part 3: Steam-Air-Mix Cycle Written by: Arthur Trapotsis MS Biochemical Engineering, MBA, Consultant When using steam autoclaves, it’s critical to identify, understand, and create the proper sterilization cycle for ALL of your load requirements. So, as part of our series discussing Steam Sterilization Cycles, this third article is designed to explore the Steam-Air-Mix Cycle, a more advanced steam sterilization cycle for unique applications. Steam-Air-Mix Cycle Certain types of sterilization loads may require steam sterilization cycles that stray from the standard Gravity, Liquids, or Vacuum types. Take, for example, sterilizing a liquid-filled syringe using one of the three standard cycles. Immediately a problem is presented here: As the syringe heats up, the liquid inside of the syringe expands, exerting pressure on the stopper that is supposed to hold the liquid inside. This is especially critical when the container is topped-off with liquid (no air inside). If air resides in the container alongside the liquid, that will increase in pressure as well. If the stopper is not able to resist those pressures, the stopper will be forced out of position and may even eject from the syringe body. Now, not only will the syringe be unusable, but whatever was inside of the syringe will have made a mess of the rest of the load and your autoclave chamber. The obvious solution is to increase the autoclave chamber pressure in order to balance out the internal and external pressure of the syringe (or other sealed container). If the pressure outside of the syringe is equal to the pressure inside, then the stopper should not move. But how is this accomplished? One way to increase autoclave chamber pressure is to simply inject more steam. Unfortunately, as the steam pressure rises, so does the temperature. When the temperature rises, the contents of the container will heat even more, causing the internal pressure to continue to rise as well. A Steam-Air Mix Cycle solves this issue by injecting compressed air into the autoclave chamber during the sterilization phase in order to artificially raise the pressure. Steam continues to be injected into the chamber as needed in order to maintain the cycle’s temperature setting. After the sterilization phase is complete, it is necessary to maintain an elevated chamber pressure during the exhaust phase in order to keep the syringe intact. However, as the temperature falls, the internal pressure of the container will begin to fall as well, potentially causing the reverse-effect where the external pressure from the chamber compromises the container. To solve this, the chamber pressure is slowly reduced as the temperature falls. To get an overview of steam sterilization, check out our video here: The Steam-Air Mix Cycle option requires you to have a compressed air supply, and it is recommended for applications where a liquid is being sterilized in a sealed container that may be affected by pressure imbalances. As always, we at CSS hope this article—and our entire Steam Sterilization Cycles series—helps answer some of your most pressing questions. However, we encourage you contact us at any time with any additional questions or inquiries you may have—our team of experts is always here to help. 17 Questions to Ask Before Buying Your Next Autoclave With so many models, sizes, options and components to choose from, how can you ever really know exactly what you need to make the most out of your investment? These questions will help you to make informed decisions by outlining what is most important to consider and know about owning an autoclave. First Name* Last Name* Company/Organization* Email* Job Title*Select OneArchitectGeneral ContractorLab ManagerFacilities ManagerService TechnicianScientistSterile Processing TechnicianDistributorOtherDescribe "Other"* Country*AfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAntigua and BarbudaArgentinaArmeniaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia and HerzegovinaBotswanaBrazilBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaColombiaComorosCongo, Democratic Republic of theCongo, Republic of theCosta RicaCôte d'IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFaroe IslandsFijiFinlandFranceFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGreeceGreenlandGrenadaGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsraelItalyJamaicaJapanJordanKazakhstanKenyaKiribatiNorth KoreaSouth KoreaKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMauritaniaMauritiusMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew ZealandNicaraguaNigerNigeriaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestine, State ofPanamaPapua New GuineaParaguayPeruPhilippinesPolandPortugalPuerto RicoQatarRomaniaRussiaRwandaSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSudanSudan, SouthSurinameSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamVirgin Islands, BritishVirgin Islands, U.S.YemenZambiaZimbabweState*Select OneAlabamaAlaskaArizonaArkansasCaliforniaColoradoConnecticutDelawareFloridaGeorgiaHawaiiIdahoIllinoisIndianaIowaKansasKentuckyLouisianaMaineMarylandMassachusettsMichiganMinnesotaMississippiMissouriMontanaNebraskaNevadaNew HampshireNew JerseyNew MexicoNew YorkNorth CarolinaNorth DakotaOhioOklahomaOregonPennsylvaniaRhode IslandSouth CarolinaSouth DakotaTennesseeTexasUtahVermontVirginiaWashingtonWest VirginiaWisconsinWyomingAre You Looking to Purchase an Autoclave?*Select OneYes, ImmediatelyYes, within 6 monthsYes, later than 6 monthsNo, just researchingAre you in a medical/healthcare (patient use) or life science (laboratory) setting?*Select OneMedical/HealthcareLife ScienceWhat type of healthcare facility do you work in?*Select OneHospitalAmbulatory Surgery CenterOther Yes, I'd like to receive occasional tips on sterilization best practices. Comments (Optional)This field is for validation purposes and should be left unchanged. Δ Tweet Like Share
9.30.24 Horizontal vs. Vertical Autoclaves: 6 Key Differences and Benefits → If you’re looking for a new autoclave for your facility, chances are you’ve considered several options during your search for the right one. When it comes to the question of whether a vertical or horizontal autoclave is the right fit for your lab or medical facility, understanding their key differences is crucial. To help you […]
9.26.24 Autoclave Pricing & Industry Averages → Whether you’re replacing outdated or broken units in your sterilizer lineup, expanding your sterile processing department (SPD), or opening up a brand new healthcare facility, there’s a lot to consider when selecting the right autoclaves for the job. While specs like chamber capacity, overall size, and performance are all important, price is more often than […]
9.25.24 10-Step Guide to Autoclave Temperature and Pressure → In labs and sterile processing departments, autoclaves play an important role in ensuring that equipment and instruments are free of contaminants that can compromise experiments, research, or patient safety. But how do these machines guarantee sterility? The answer lies in their use of temperature and pressure to create the kinds of environments that are lethal […]